
1

6th Fenix Research Infrastructure Webinar:
Introduction to the JUSUF system at JSC

Tuesday 1 September 2020, 15:00 CEST

Speakers: Benedikt von St. Vieth and Pavel Mezentsev

(Juelich Supercomputing Centre)

Fenix has received funding from the European Union's Horizon 2020 research and innovation programme
through the ICEI project under the grant agreement No. 800858.

The webinar is being recorded

2

Overview of webinar

3

• JUSUF Overview

• Cluster partition

• Cloud partition

• Q & A

JUSUF – Jülich SUpport for Fenix

4

 Prime contractor: Atos

 Hybrid HPC/Cloud system with interactive workloads in mind

 Compute partition for regular HPC jobs, ParaStation Cluster Tools

 Cloud partition for IaaS workloads, OpenStack

 Provisioned and operated as part of the ICEI project

 Co-financed by the EC: Share of resources will be provided Europe-wide

 Infrastructure component in the federated pan-European e-infrastructure
Fenix build up by BSC, CEA, CSCS, CINECA and JUELICH

JUSUF – Hardware Overview

5

 Based on AMD EPYC Rome CPUs and InfiniBand:

 205 nodes with 2× AMD EPYC 7742, 256 GB, 1 TB NVMe SSD (out of
these 61 GPU nodes with 1 Nvidia Tesla V100)

 Mellanox HDR InfiniBand full-fat tree interconnect (HDR100 at node
level)

 GPFS connection via 40 Gb/s Ethernet per node

 4 frontend/login nodes with 100 GE uplink connection

 Storage:

― 8.2 Tbit/s total bandwidth between compute nodes and GPFS

― 2.4 Tbit/s total bandwidth between JUSUF and JUST-IME (connected
via HDR InfiniBand)

― JUST-IME can be used as a transparent cache for GPFS with a potential
to significantly speed up the IO (there is also built-in MPI support).
Note: JUST-IME resources need to be separately requested/granted

JUSUF – CPU

6

 AMD EPYC 7742, 225 Watts TDP

 64 cores, 2.25 GHz, up to 3.4 GHz Boost

 Up to two-way SMP

 Eight channels of DDR4-3200 memory per socket

 Max Bandwidth 190.7 GiB/s per socket

 4.6 Tflop/s peak performance per node (2× CPUs)

 PCIe 4.0

JUSUF Cluster

7

JUSUF – Getting Resources

8

• Access can obtained via JuDoor: https://judoor.fz-

juelich.de

• More information about the registration, getting access

to the system and system documentation is available at

https://fz-

juelich.de/ias/jsc/EN/Expertise/Supercomputers/NewUs

ageModel/JuDoor.html

• More information about FENIX resources including

JUSUF: https://fenix-ri.eu/access

https://judoor.fz-juelich.de/
https://fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/NewUsageModel/JuDoor.html
https://fenix-ri.eu/access

JUSUF – Access

9

• SSH access:

o JUSUF can be accessed via jusuf.fz-juelich.de

o If a specific login node is needed one can use jusufN.fz-juelich.de

where N is the number (1-3) of the login node

o Only key-based authentication is supported (no user/password

access)

o The private key needs to be protected with a passphrase

o A set of hosts/subnets that will be used to access the system has to

be provided within a from-clause

o The manual modification of authorized keys file is forbidden

• JupyterHub:

o https://jupyter-jsc.fz-juelich.de

• UNICORE:

o Used e.g., for HBP Collaboratory access

https://jupyter-jsc.fz-juelich.de/hub/login?next=/hub/start

System Usage

10

• Software Modules (Easybuild)

o The installed software of the clusters is organized through a hierarchy of modules.
Loading a module adapts your environment variables to give you access to a
specific set of software and its dependencies.

o Preparing the module environment includes different steps:

1. Load a compiler (GCC and Intel are available) and potentially MPI (IntelMPI and
ParaStationMPI are available)
Example: $ module load Intel ParaStationMPI

2. Then load other application modules, which were built with currently loaded
modules (compiler, MPI or other libraries)
Example: $ module load GROMACS/<version>

o Software is bundled in Stages that are updated once or twice per year (major
software upgrade including base compiler versions, etc.)

• Compilation

o Modules modify the user environment (including $PATH) and make compilers
directly available

o Use of absolute paths is discouraged. Use $EBROOT<Package> variable if necessary

o Hint: Use compiler wrappers for compilation of MPI applications:

 mpicc, mpicxx, mpif77, mpif90

o Example: Compile an MPI program in C++:

 mpicxx -O2 -o mpi_prog program.cpp

JUSUF – SLURM

11

• Slurm is the Batch System (Workload Manager) used on all production
supercomputers at JSC

o JSC uses Slurm together with the ParaStation resource management system
developed by ParTec and JSC

o Identical environment to JUWELS and JURECA
• Job scheduling according to priorities. The jobs with the highest priorities will be

scheduled next.

• Backfilling scheduling algorithm. The scheduler checks the queue and may
schedule jobs with lower priorities that can fit in the gap created by freeing
resources for the next highest priority jobs.

• No node-sharing. The smallest allocation for jobs is one compute node. Running
jobs do not disturb each other.

• Accounted CPU-Quotas/job = Number-of-nodes x cores/node x Walltime
(corehours)

SLURM Partitions

12

Partition Resource Value

-p batch (default)
max. wallclock time
(normal / nocont)

24 h / 6 h

min. / max. number of
nodes

1 / 64

-p gpus
max. wallclock time
(normal / nocont)

24 h / 6 h

min. / max. number of
nodes

1 / 46

-p develgpus
max. wallclock time
(normal / nocont)

24 h / 6 h

min. / max. number of
nodes

1 / 2

• Default node count = 1

•Default wallclock time = 1 h

•Partition layout is subject to change, potentially additional partitions for interactive
use cases will be added

SLURM Job Submission

13

• Search for and enable a project with allocated computing time via
o jutil user projects; jutil env activate -p cjsc -A jsc (e.g.)

• Submit a job requesting 2 GPU nodes for 1 hour, with 128 tasks per node (implied

value of ntasks: 256):
o sbatch -N2 --ntasks-per-node=128 –p gpu --time=1:00:00 jobscript

• Submit a job-script in the large partition requesting 32 nodes for 2 hours:
o sbatch –N32 -p batch -t 2:00:00 jobscript

• Here is a simple example of a job script where we allocate 4 compute nodes for 1

hour. Inside the job script, with the srun command we request to execute on 4 nodes

with 2 process per node the system command hostname, requesting a walltime of

10 minutes. In order to start a parallel job, users have to use the srun command that

will spawn processes on the allocated compute nodes of the job.

#!/bin/bash

#SBATCH -J TestJob
#SBATCH -N 4
#SBATCH -o TestJob-%j.out
#SBATCH -e TestJob-%j.err
#SBATCH --time=10
#SBATCH -A <budgetID>

srun --ntasks-per-node=2 hostname

NEST on JUSUF

14

Best practices

•Always pin OpenMP threads!
• Use OMP_PROC_BIND=true

• Remember to set OMP_NUM_THREADS

•Always bind MPI processes!
• Intel MPI recommended

• Offers greater tuning
• Many I_MPI_SHM_* env variables

• Use I_MPI_PIN_DOMAIN=socket

• No need to use Slurm’s --cpu-bind

•Recommended modules:
• Intel/2019.5.281-GCC-8.3.0

• IntelMPI/2019.6.154

• jemalloc/5.1.0

• GSL/2.5

Single-node performance

•Measure simulation performance:
• Real-time factor:

JUSUF Cloud

15

Cloud Computing - 5th Fenix Webinar

16

■ Introduction to Cloud Computing

■ Introduction to the OpenStack Dashboard, with Demo

■ https://fenix-ri.eu/media/webinars

https://fenix-ri.eu/media/webinars

Cloud Computing / OpenStack

17

■ Cloud computing offers on-demand, self-managed
resources, as a service

Software-as-a-Service (SaaS)
Software delivered via the internet, usually accessible via browser or

downloadable client, examples include Google Play Store, Dropbox & Spotify

Platform-as-a-Service (PaaS)
Platform for deploying and building software, examples include operating

systems, web servers & databases

Infrastructure-as-a-Service (IaaS)
Computing infrastructure including virtual machines, storage and network,

examples include AWS, Azure and Google Cloud Platform

JUSUF Cloud – Access

18

■ Resources are available via Fenix/PRACE calls
1. Users participate in the call, request a amount of resources

2. ICEI coordination office allocates resources and acts as a information
broker to JSC

3. A project is created on JUSUF Cloud and users are pre-assigned to it

■ Users of the JUSUF Cluster do not get access automatically

■ Dashboard available at: https://jusuf-cloud.fz-juelich.de/
■ Access via Fenix AAI and/or a JuDoor account

■ System documentation: https://apps.fz-
juelich.de/jsc/hps/jusuf/cloud/index.html
■ A short howto for typical OpenStack first steps is included

■ Ticket System: sc@fz-juelich.de, topic JUSUF Cloud

https://jusuf-cloud.fz-juelich.de/
https://apps.fz-juelich.de/jsc/hps/jusuf/cloud/index.html
mailto:sc@fz-juelich.de

JUSUF Cloud – Workloads

19

■ Platform services (e.g., HBP platforms)

■ Web services (including workflow management tools)

■ Databases/repositories

■ Compute & analytics (to some extend)

Technologies and Design Considerations

20

■ RedHat OpenStack Platform 16 (OpenStack Train)
■ OpenStack Triple-O (OpenStack on OpenStack) for deployment

■ Fully containerized installation with RHEL8 and podman

■ No (IaaS typical) resource overcommitment for
CPU/memory
 Available resources are limited to real hardware

■ NFS used as storage backend for VMs, Images, and Block
Storage
 No CoW longer instantiation due to copy of rootfs

■ Node layout
 Designed to enable HPC and cloud workloads on same hardware: Implies

reduced redundancy on node level (e.g., regarding network resources)

 High availability of critical services should be adressed by additional
resources and/or implementation on a service level

Network Accessibility

21

■ Publicly adressable Floating IPs in range 134.94.88.*

■ Every assigned Floating IP reported to FZJ IP management

■ Due to FZJ security constraints, only specific ports are
available from the Internet
■ 22 (SSH)

■ 80 (http)

■ 443 (https)

■ 7000-7020 (tcp/udp)

 Make sure you use the proper ports in OpenStack Neutron and
your services!

JUSUF Cloud – Flavors

22

Flavour VCPUs RAM Disk Hardware

gpp.s 1 3GB 20

gpp.m 2 8GB 20

gpp.l 4 16GB 20

gpp.xl 16 64GB 20

gpp-ssd.l 4 16GB 20 NVMe

gpp-ssd.xl 16 64GB 20 NVMe

gpu.m 2 8GB 20 vGPU

gpu.l 4 16GB 20 vGPU

gpu.xl 16 64GB 20 vGPU

JUSUF Cloud – NVMe/vGPU

23

■ Number of NVMe/vGPU VMs limited due to underlying
hardware

■ vGPUs with very limited live-migration support
■ We can not guarantee a non-disruptive operation in case of platform

maintenance

■ Please define your workloads in an easy-to-reproduce way!

■ NVMe made available via PCI passthrough
■ Data cleanup has to happen on your own

■ live-migration in case of platform maintenance not supported

 Do not use NVMe/vGPU devices where you can avoid them!

 Use them for short-living computing/data-processing, but not
for services like databases!

JUSUF Cloud – vGPU Example

24

$ openstack server create --flavor gpu.m --security-group your_group --key-name
your_key --network your_net --image CentOS-8-GenericCloud-8.2.2004-
20200611.2.x86_64 gpu-webinar
$ … (allocate/associate floating IP)
$ ssh centos@<Floating_IP>
$ sudo yum install -y gcc make kernel-devel elfutils-libelf-devel libglvnd libglvnd-
devel pciutils gcc-c++ epel-release dkms
$ curl -o /tmp/NVIDIA-Driver.latest.run https://hpsrepo.fz-
juelich.de/jusuf/nvidia/NVIDIA-Driver.latest
$ chmod 755 /tmp/NVIDIA-Driver.latest.run
$ sudo mkdir /etc/nvidia
$ curl -o /etc/nvidia/gridd.conf https://hpsrepo.fz-juelich.de/jusuf/nvidia/gridd.conf
$ sudo /tmp/NVIDIA-Linux-x86_64-440.56-grid.run
$ sudo shutdown now -r

JUSUF Cloud – vGPU Example

25

$ ssh centos@<Floating_IP>
[centos@gpu-webinar ~]$ sudo lspci | grep -i nvidia
00:05.0 3D controller: NVIDIA Corporation GV100GL [Tesla V100 PCIe 16GB] (rev a1)
[centos@gpu-webinar ~]$ nvidia-smi
Mon Aug 31 13:21:33 2020
+---+
| NVIDIA-SMI 440.56 Driver Version: 440.56 CUDA Version: 10.2 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GRID V100-4C On | 00000000:00:05.0 Off | N/A |
| N/A N/A P0 N/A / N/A | 304MiB / 4096MiB | 0% Default |
+-------------------------------+----------------------+----------------------+

+---+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===|
| No running processes found |
+---+

■ Neuroscientists obtain access through HBP

via the HBP/EBRAINS Call

■ Upcoming PRACE-ICEI Call for proposals

to be out soon

■ For researchers in need of:

 Scalable and interactive computing resources

 Virtual machine services

 Active and archival data repositories

■ All details on access to Fenix resources:

https://fenix-ri.eu/access

Access to Fenix Services

2

https://fenix-ri.eu/news/human-brain-project-ebrains-call-proposals-european-neuroscientists-large-using-icei-e
https://fenix-ri.eu/access

Register at:

https://fenix-ri.eu/events

27

We would appreciate your feedback!

Please respond to our survey

28

29

30

Stay tuned!

Sign up for the Fenix User Forum:
https://fenix-ri.eu/infrastructure/fenix-user-forum

icei-coord@fz-juelich.de
fenix-ri.eu

@Fenix_RI_eu

Fenix has received funding from the European Union's Horizon 2020 research and innovation programme
through the ICEI project under the grant agreement No. 800858.

