





## What we learn in one crazy year,...





## What we learn in one crazy year,...





Viral/Host Structural Data → Therapeutics →

DOIs

Contribution ▼

#### The first open data repository of Covid-19

#### Targets:

3CLpro / Mpro Activity hibition of PLpro Protease Activity

Host Immune Response

Inhibition of Nsp13 Helicase Activity

Blocking SARS-CoV-2 Spike Protein Binding to Human ACE2 Receptor Inhibiting Cleavage of the SARS-CoV-2 Spike Protein

hibition of Formation of the Viral Fusion Core

Inhibition of Viral Polymerases

#### Proteins:



#### Structures:

3CLpro ACE2 BoAT1 E protein Fc receptor Furin Helicase IL6R M protein N protein NSP1 NSP10 NSP11 NSP14 NSP15 NSP16 NSP2 NSP4 NSP6 NSP7 NSP8 NSP9 ORF10 ORF3a ORF6 ORF7a ORF7b ORF8 PD-1 PLpro RdRP TMPRSS2 fusion core p38 spike virion

#### Models:

3CLpro ACE2 BoAT1 E protein Fc receptor Furin Helicase IL6R M protein N protein NSP1 NSP10 NSP11 NSP14 NSP15 NSP16 NSP2 NSP4 NSP6 NSP7 NSP8 NSP9 ORF10 ORF3a ORF6 ORF7a ORF7b ORF8 PD-1 PLpro RdRP TMPRSS2 fusion core p38 spike virion

#### Therapeutics:

antibody antiviral immunotherapy peptide small molecule

#### Simulations:

3CLpro ACE2 BoAT1 E protein Fc receptor Furin Helicase IL6R M protein N protein NSP1 NSP10 NSP11 NSP14 NSP15 NSP16 NSP2 NSP4 NSP6 NSP7 NSP8 NSP9 ORF10 ORF3a ORF6 ORF7a ORF7b ORF8 PD-1 PLpro RdRP TMPRSS2 fusion core p38 spike virion

#### Links:

ANI-CAS Antiviral Archive ANI-FDA Drugs Archive CORD-19: COVID-19 Open Research Dataset COV3D: A Coronavirus 3D Structure Database Coronaviruses 101- Focus on Molecular Virology Drug Repurposing Hub DrugBank database Enamine REAL Space MolPort Open Science Data Portal PubChem SWEETLEAD Solvation Maps for COVID19-related Protein Targets Structural 3iology Task Force GitHub page Structure models of all mature peptides in 2019-nCoV genome by C-I-TASSER SuperDRUG The Cambridge Structural Database Tristan Croll ISOLDE COVID-19 WuXi GalaXi zinc15 database



#### Coronavirus nonstructural protein 7

#### Inhibition of viral polymerases

tools SARS-CoV-2 nsp7-nsp8-nsp12 RNA polymerase complex in aqueous solution

Develop big data

DESRES

Represented Proteins: RdRP NSP7 NSP8

Model: Files | Source Structure PDBs: 6M71 | Visualize: 3DMol.is

The C- and N-peptide termini capped with amide and acetyl groups respectively. The missing loops in the published structural models were manually built as extended peptide conformation. The missing part of Chain D was built through homology modeling using the structure of SARS-CoV-1 polymerase complex (PDB entry 6NUR). The system was neutralized and salted with NaCl, with a final concentration of 0.15 M.

#### Simulations:

DESRES-ANTON-10917618 10 µs simulation of SARS-CoV-2 nsp7-nsp8-nsp12 RNA polymerase complex in aqueous solution

DESRES-ANTON-10917618 10 µs simulation of SARS-CoV-2 nsp7-nsp8-nsp12 RNA polymerase complex, no water or zinc

SARS-CoV-2 RdRP (NSP12) in complex with NSP7 and two copies of NSP8: ISOLDE refined model

Tristan Croll

Represented Proteins: RdRP NSP7

Model: Files | Source Structure PDBs: 6M71 | Visualize: 3DMol.js

Refinement of 6m71 that fixes multiple issues: \* Corrects incorrect modeling of both zinc binding sites (originally modeled as disulfides) \* Corrects 1-2 dozen rotamer adjustments and peptide flips \* Models C-terminal domain of chain D (one of the NSP8s) using well-resolved chain B See a complete description of the issues remedied by this model.

#### Simulations

SARS-CoV-2 RdRp complex (nsp12+2\*nsp8+nsp7) + RNA template-primer + ATP model for MD simulations

Vaibhav Modi

University of Jyväskylä -- Department of Chemistry and Nanoscience Center -- Computational Biomolecular Chemistry Group

Represented Proteins: RdRP NSP7 NSP8

Model: Files | Source Structure PDBs: 6NUR 7BTF 7BV2 6YYT | Visualize: 3DMol.js

Model of the RdRp + RNA + ATP complex of the SARS-CoV-2 with non-covalently bound ATP molecule is built using homology modelling with the SARS-CoV-1 RdRp complex (PDB:6NUR) as template structure (https://doi.org/10.1038/s41467-019-10280-3). The modelled structure shows excellent fit (< 0.6 Å) to the SARS-CoV-2 RdRp complex (PDB:6M71) kindly shared with us by Gao et.al. Further, the model of RdRp complex with RNA and ATP molecule in Tri-phosphate form is modelled based on comparative fitting with previously known poliovirus and norovirus structres (with NTP molecule in hydrophobic cleft). The protein-RNA complex with Remdesivir shows excellent fit (< 0.7 Å) with the recently published RdRp complex with RNA template-primer (PDB:7BV2, 6YYT). The fitted models have been equilibriated to perform long MD simulations

#### Simulations:

Gromacs 100 ns MD of SARS-CoV-2 RdRp + RNA template-primer + ATP model, All Atom model

SARS-CoV-2 apo-RdRp complex (nsp12+2\*nsp8+nsp7) model for MD simulations Vaibhay Modi

University of Jyväskylä -- Department of Chemistry and Nanoscience Center -- Computational Biomolecular Chemistry Group

Represented Proteins: RdRP NSP7 NSP8

Model: Files | Source Structure PDBs: 6NUR 6M71 7BTF 7BV1 | Visualize: 3DMol.js

Model of the apo-protein form of RdRp complex of the SARS-CoV-2 is built using homology modelling with





## https://covid.bioexcel.eu/proteins/







Genome-wide structure and function modeling of SARS-COV-2













| cession: | MCV1900002 |  |
|----------|------------|--|

HOME BROWSE CONTACT RESTAPI

OVERVIEW

O DATA IN THIS PAGE

| atistics<br>Counts  |                         |                       |               |                          |
|---------------------|-------------------------|-----------------------|---------------|--------------------------|
| System atoms 136320 | Proteins atoms<br>12119 | Proteins residues 757 | Phospholipids | Solvent molecules 123717 |
| Positive ions       | Negative ions           |                       |               |                          |
| 0                   | 1                       |                       |               |                          |

Adding value to the trajectories

analyses

COVID-19

MCV1900006 SARS-CoV-2 spike receptor binding domain

Mutated system of Bat-SARSr-CoV RATG13 spike receptor binding



200 fs 20001 10 ps Not available ns Ensemble Membrane Temperature Water type Pressure coupling K Not available 310 NPT Isotropic No

https://bioexcel-cv19.bsc.es



MCV1900007





#### MCV1900213 - Trajectory

















## HADDOCK: Meeting the increased demand

The HADDOCK workflow machinery was modified to improve its efficiency and meet the increased demand (allows to run more processes in // - relevant toward exascale).





By now more than 10500 COVID-related runs!!

10



## Template, shape-driven HADDOCKing



- Identify template structures
- Transform template compound atoms to dummy atoms
- Dock using restraints from the dummy shape atoms to the conformers without pre-selecting conformers



















https://covid19.workflowhub.eu

s://elixir-europe.org/news/hacking-pandemic











## Development of the Workflow Hub for workflows **fast-tracked** for COVID-19

- COVID-19 Virtual BioHackathon April 2020
- Community hackathons during 2020
- A pan-project collaboration
- Expanded beyond COVID

# >25 **public COVID-19 workflows** identified, curated and registered

- Galaxy, Nextflow, CWL, Snakemake
- Listed on ELIXIR COVID-19 data portal

#### A catalyst for **community collaboration**

- Workflow creators
- Workflow infrastructure developers

#### Improved standards and best practices

• Bioschemas, RO-Crate, CWL, nf-core





## RdRNA polymerase



#### **Binding site-driven docking protocol**

atc

NA

J01DC11

J01DI54

A04AD12



DB06590 Ceftaroline-fosamil J01DI02 DB11574 Elbasvir J05AP54 CID5271809 favipiravir-RTP J05AX27 5-O-phosphono-alpha-D-DB01632 NA -90.028 NA Approved ribofuranosyl-diphosphate DB09335 Alatrofloxacin J01MA13 -88.158 Antiinfectives Approved Showing 1 to 10 of 2,026 entries Previous 203



Cluster-based scores





target

Remdesivir-triphosphate

Ceforanide

GS-461203

Ceftolozane

Fosaprepitant

remTP

DB00923

DB09050

DB06717

CID23725128





## RdRNA Polymerase. The core of Covid-19 replication



Complex of NSP7 (83 Aa) & NSP8 (198 Aa): Primase. NSP12: RNA dependent RNA polymerase





#### Polimerization mechanism of RdRp SARS-CoV-2

B3LYP/6-311++G\*\*:DFTB3/MM



Reaction Coordinate CVs (Å)



Very efficient enzyme!



Modeling





# Massive-scale simulations of SARS-CoV-2 proteins



- Markov State Modeling of 100µs of simulations of main protease (Mpro) revealed alternative loop conformations that produce two distinct states of the active site (Cathrine Bergh, KTH)
- Affects binding in docking studies, improves correlation with SARS-CoV-1 binding assays
- Initiated new collaborations with CINECA and pharma sector (Dompé) that led to EXSCALATE4CoV project









## SARS-CoV-2 (COVID-19) Spike protein trimer



- Responsible for recognition and initial interaction with human cells
- Structure is a trimer with ~1200 amino acids in each individual monomer.
- Part of S-protein responsible for binding is called Receptor Binding Domain (RBD)
- Target for the binding found to be human Angiotensin Converting Enzyme 2 (ACE2).
- Target for COVID-19 therapy, through blocking binding towards ACE2





## Aptamers design for selective binding

Computationally designed oligo-DNA based aptamer

Binding mode with SARS-CoV-2 RBD

Experimental binding check





- Synthetic ligands designed to specifically bind with the chosen target.
  - Oligomers of nucleic acids (RNA, DNA)
  - Oligopeptides
  - Hybrid substances which combines nucleic acids With peptides and hydrocarbons.
- Modelling of aptamers allows systematic:
  - Structure prediction
  - Binding sites with estimation of binding affinity
  - Iterative design of the new aptamers using combination of simulations, machine learning techniques and experiments
- The best designed aptamer 31 shows binding affinity close to the much bigger aptamer CoV2-RBD-1C made by in vitro evolutional protocol SELEX











A number of mutations were identified to increase the binding affinity (negative free energy differences in the figure).







### SARS-Cov2 RBD mutations

Modeling studies

Alchemical calculations predict that the probed mutations have only moderate effect (+- 1 kcal/mol) on the complex binding affinity in contrast to the previously reported predictions (10.1101/2020.03.15.991844).

The mutations also have moderate effect within the range of +- 2 kcal/mol on the stability of the RBD apo state.





## BioExcel Building Blocks software library



http://mmb.irbbarcelona.org/biobb/

#### BioExcel Building Blocks: CLI - Mutations

```
conf = settings.ConfReader(sys.argv[1])
global_log, _ = fu.get_logs(path=conf.get_working_dir_path())
global_prop = conf.get_prop_dic(global_log=global_log)
global_paths = conf.get_paths_dic()
global_log.info("step1_pdb: Download the initial Structure")
Pdb(**global_paths["step1_pdb"], properties=global_prop["step1_pdb"]).launch()
global_log.info("step2_fixsidechain: Modeling the missing heavy atoms in the structure side chains")
FixSideChain(**global_paths["step2_fixsidechain"], properties=global_prop["step2_fixsidechain"]).launch()
for mutation in conf.properties['mutations_list']:
    mut_paths = conf.get_paths_dic(mutation)
    mut_prop = conf.get_prop_dic(mutation, global_log=global_log)
    mut paths['step3 mutate']['input pdb path'] = qlobal paths['step2 fixsidechain']['output pdb path']
    global_log.info("step3_mutate: Modeling a particular residue mutation")
    Mutate(**mut paths["step3 mutate"], properties=mut prop["step3 mutate"]).launch()
    global_log.info("step4_pdb2gmx: Generate the topology")
    Pdb2gmx(**mut_paths["step4_pdb2gmx"], properties=mut_prop["step4_pdb2gmx"]).launch()
```



```
mutations_list: ["A:Arg5Ala", "A:Arg5Gly", "A:Arg5Lys"]

step1_pdb:
    paths:
    output_pdb_path: structure.pdb
    properties:
    pdb_code: 1aki
```

### PyCOMPSs automatic parallelization

```
print 'step2: mmbuniprot -- Get mutations'
mmbuniprot = uniprot.MmbVariants(prop['pdb_code'])
mutations = mmbuniprot.fetch_variants()

for mut in mutations:
    mut_path = cdir(wd, mut)

print 'step3: scw -- Model mutation'
    scw_path = cdir(mut_path, 'step3_scw')
    scw_pdb = opj(scw_path, prop['mutated_pdb'])
    scw = scwrl.Scwrl4(mmbpdb_pdb, scw_pdb, mut, scwrl_path=scwrl_path)
    scw_pdb2 = scw.launchPyCOMPSs()
```









## The COVID-19 bbb workflow team



















## PMX BBB workflows





## **COVID-19:** infective process





# The trajectory of the virus before reaching humans





ICEI/FenixPRACEAccess

# PRACE-ICEI Call for Proposals Application Form

| Project name | BioExcel biomolecular simulation workflows-3                                                                |  |  |  |  |  |
|--------------|-------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|              | Life Sciences, Biomolecular simulation, Structural Bioinformatics, Molecular Dynamics, Free energy, Docking |  |  |  |  |  |

# Where does SARS-Cov2 come from and where is it going?



- BtKY72/Bat/Kenya/2007\_rhinolohpus\_spp
- SARS-CoV-2/UniSR1
- hCoV/19/bat/Yunnan/RaTG13/2013\_affinis
  - hCoV-19/pangolin/Guangxi/P5L/2017

RatG13 a virus from bat is the closest analog to SARS\_Cov2

But RatG13 and SARS\_Cov2 RBD are completely different





#### No zoonotic barrier!





 $\Delta\Delta G_{binding}$  (RG13 >> SC2)/Affi+ = -1.6 ± 1.1 Kcal/mol  $\Delta\Delta G_{binding}$  (RG13 >> SC2)/Human = -0.4 ± 0.2 Kcal/mol

#### Experiments by M.Castelli; N.Clementi & M.Nicasio



















## Be ready for further zoonotic transmission







## PMX BB Workflow (human polymorphisms)







| Variants     | Mutation | Allele frequency | ddG (Kcal/mol) |
|--------------|----------|------------------|----------------|
| rs73635825   | S19P     | 3,13E-04         | -              |
| rs1299103394 | K26E     | 5,45E-06         | 0,89           |
| rs4646116    | K26R     | 3,88E-03         | -1,1           |
| rs781255386  | T27A     | 1,09E-05         | 0,1            |
| rs778500138  | E35D     | N/A              | 0,1            |
| rs1348114695 | E35K     | 1,64E-05         | 4,25           |
| rs146676783  | E37K     | 3,90E-05         | 7,3            |
| rs755691167  | K68E     | 1,09E-05         | 2,36           |
| rs766996587  | M82I     | 2,44E-05         | 1,44           |
| rs759134032  | P84T     | 5,47E-06         | -              |
| rs143936283  | E329G    | 3,44E-05         | 0,36           |
| rs961360700  | D355N    | 1,17E-05         | 3,48           |
| rs1396769231 | M383T    | N/A              | -1,24          |
| rs762890235  | P389H    | 3,83E-05         | -              |
| rs1238146879 | P426A    | 5,47E-06         | -              |
| rs1316056737 | D427Y    | 1,09E-05         | 0,38           |
| rs1016777825 | R559S    | N/A              | -2,14          |
|              |          |                  |                |











# Exploring virus





| -            |          |           |           |                       |                          |                       |    |
|--------------|----------|-----------|-----------|-----------------------|--------------------------|-----------------------|----|
| RBD position | original | variation | frequency | location              | Fold-x<br>ddG (Kcal/mol) | pmx<br>ddG (Kcal/mol) |    |
| 439          | N        | K         | 213       | Scotland              | -1,88                    | -3,85                 |    |
| 444          | K        | R         | 1         |                       | -0,39                    | -0,77                 |    |
| 446          | G        | Α         | 3         | Australia             | 2,45                     | 0,45                  |    |
| 445          | V        | - 1       | 1         |                       | -0,63                    | 0,07                  |    |
| 446          | G        | S         | 3         |                       | 3,39                     | 0,53                  |    |
| 446          | G        | V         | 3         | Australia/England     | 4,07                     | -0,22                 |    |
| 455          | L        | F         | 1         |                       | 3,22                     | 2,48                  |    |
| 456          | F        | L         | 1         |                       | 2,61                     | 1,55                  |    |
| 475          | Α        | V         | 4         | USA                   | 1,81                     | -1,71                 |    |
| 476          | G        | S         | 19        | USA (1 in<br>Belgium) | 1,9                      | 0,31                  | 0  |
| 478          | Т        | 1         | 65        | England               | -0,85                    | -0,06                 |    |
| 483          | V        | Α         | 30        | USA                   | -0,2                     | 0,07                  | -0 |
| 483          | V        | - 1       | 2         | UK                    | 0,04                     | 0,03                  |    |
| 483          | V        | F         | 5         | Spain                 | -0,2                     | 0,21                  |    |
| 484          | Е        | Α         | 1         |                       | 1,06                     | -                     |    |
| 490          | F        | S         | 3         | England               | 1,11                     | 0,25                  |    |
| 490          | F        | L         | 2         | Australia             | 0,64                     | -0,3                  |    |
| 494          | S        | Р         | 3         | England               | -                        | -                     |    |
| 495          | Υ        | N         | 1         | Luxembourg            | 5,25                     | 1,39                  |    |
| 503          | V        | F         | 1         | USA                   | -0,71                    | 0,19                  |    |



SARS-Cov2 is selecting mutations favoring binding!











#### Bio Excel Partners 2019

















BioExcel is funded by the European Union Horizon 2020 program under grant agreements 675728 and 823830.