

How to exploit ICEI scalable computing services

Sadaf Alam

Swiss National Supercomputing Centre (CSCS)

Webinar

December 10, 2019

Piz Daint—A user's perspective

- A multi-faceted supercomputer
 - Scalable computing services (with heterogenous multi-core and hybrid GPUs)
 - Interactive computing services (with multi-core and GPUs—JupyterHub and visualisation applications)
 - A Linux cluster environment with several, widelyused code development tools
 - A slurm cluster configuration for running jobs
 - Common storage interfaces for file transfers
 - HPC container services for containerized workloads
 - User and quota management tools

Piz Daint specifications

Model	Cray XC40/XC50
XC50 Compute Nodes	Intel® Xeon® E5-2690 v3 @ 2.60GHz (12 cores, 64GB RAM) and NVIDIA® Tesla® P100 16GB - 5704 Nodes
XC40 Compute Nodes	Two Intel® Xeon® E5-2695 v4 @ 2.10GHz (2 x 18 cores, 64/128 GB RAM) - 1813 Nodes
Login Nodes	Intel® Xeon® CPU E5-2650 v3 @ 2.30GHz (10 cores, 256 GB RAM)
Interconnect Configuration	Aries routing and communications ASIC, and Dragonfly network topology
Scratch capacity	8.8 PB

Piz Daint programming environment

- C, C++ and Fortran compilers including multi-threading support
 - Cray, Intel, GNU and PGI
- MPI library
 - Optimized library from Cray, based on MPICH
- GPU
 - Nvidia CUDA tools
 - PGI OpenACC compiler
- Libraries:
 - Numerical libraries
 - Parallel IO libraries

Available using a module framework: https://user.cscs.ch/computing/compilation/

module load daint-gpu
module load daint-mc

Piz Daint resource management & scheduling system

 Slurm batch system for the submission, control and management of user jobs (https://user.cscs.ch/access/running)

Name	Max time	Max nodes	Brief Description
debug	30 min	4	Quick turnaround for test jobs (one per user)
large	12 h	4400	Large scale work, by arrangement only
long	72 h	4	Maximum 5 long jobs in total (one per user)
normal	24 h	2400(gpu)/ 512(mc)	Standard queue for production work
prepost	30 min	1	High priority pre/post processing
xfer	24h	1	Data transfer queue

Piz Daint storage & data services

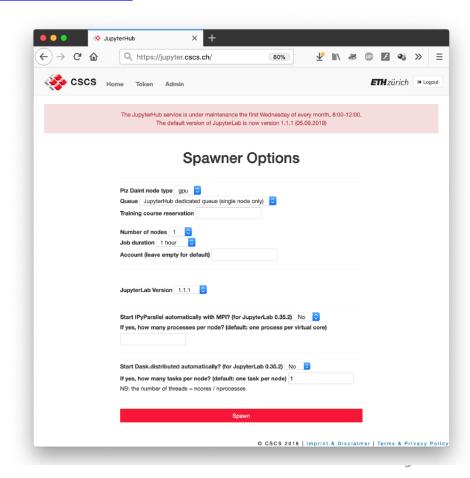
- Multiple file systems
 - Performance characteristics
 - Functional characteristics
- Data transfer services (internal and external)

	/scratch (Piz Daint)	/scratch (Clusters)	/users	/project	/store
Туре	Lustre	GPFS	GPFS	GPFS	GPFS
Quota	Soft quota 1 M files	None	10 GB/user 100K files	Maximum 50K files/TB	Maximum 50K files/TB
Expiration	30 days	30 days	Account closure	End of the project	End of the contract
Data Backup	None	None	90 days	90 days	90 days
Access Speed	Fast	Fast	Slow	Medium	Slow
Capacity	8.8 PB	1.4 PB	86 TB	4.7 PB	3.6 PB

Piz Daint HPC container service

- Tools for running a Linux container on HPC systems:
 - Sarus
 - Singularity
- Sarus is a software to run Linux containers:
 - Security oriented to HPC systems
 - Compatibility with the Open Container Initiative (OCI) standards
 - Compatibility with the presence of a workload manager
 - Creation of container filesystems tailored for diskless nodes and parallel filesystems https://user.cscs.ch/tools/containers/sarus/

```
module load daint-gpu # or daint-mc
module load sarus
```



Piz Daint scalable tools and frameworks

- Debugging and performance analysis tools
 - https://user.cscs.ch/computing/analysis/
 - Debug (Multi-core, GPU & MPI enabled)
 - https://user.cscs.ch/computing/analysis/ddt/
 - Nvidia debugger
 - Performance (Multi-core, GPU & MPI enabled)
 - Cray performance tools
 - Score-p/Vampir/Scalasca
 - Nvidia performance tools
- Data science frameworks
 - https://user.cscs.ch/computing/data_science/ (frameworks e.g. Python, TensorFlow, Theano, Spark, Dask, etc.)

Piz Daint interactive computing services

- https://user.cscs.ch/tools/interactive/
- https://user.cscs.ch/computing/visualisation/
- https://jupyter.cscs.ch
- JupyterHub provides Jupyter servers on demand for users of Piz Daint
- Log in with your CSCS credentials
- Spawns a server on a dedicated compute node of Piz Daint (gpu or mc)
- Launch time should be 5 minutes maximum
- To load modules or activate virtual environments, add these commands to \$HOME/.jupyterhub.env

How to access Piz Daint

- Start with a valid account
 - Link: https://www.cscs.ch/user-lab/applying-for-accounts/ & https://account.cscs.ch (assuming a valid allocation or grant to use resources)
- Front-end ela (external login interface)
 - Minimal Linux environment (\$ ssh ela.cscs.ch)
 - ssh Piz Daint from ela (\$ ssh daint.cscs.ch)
 - Start file transfer if needed
 - Is not equipped with programming environment and tools
 - Piz Daint scratch is not available

How to compile code

- Check your environment
 - \$ module list
- Module loaded at login
 - XC50 (Haswell and P100) daint-gpu
 - XC40 (Broadwell) daint-mc
 - \$ module avail
 - \$ module swap

cc for C code, CC for C++ code and ftn for

Fortran code

- Compiler options (check man pages for details)
 - Cray, GNU, Intel and PGI (wrappers for C, C++ and Fortran)
 - GPU: Nvidia and directive based programming

How to run code/submit a batch job

 Slurm is the batch scheduling system that allows users to run jobs with specific settings

```
job.sh

#!/bin/bash -1
#SBATCH --nodes=10
#SBATCH --time=0:30:00
#SBATCH --partition=normal
#SBATCH --constraint=gpu
[...]
srun myprogram
```

\$ sbatch job.sh

Slurm Jobscript Generator					
https://user.cscs.ch/access/running/jobscript_generator/					
GETTING STARTED	Slurm Jobscript Generator				
Accounting	Computing system Select the computing system on which you want to submit your job.				
Running Jobs Jobscript Generator	Daint MultiCore	‡			
Fulen	Partition				
Grand Tavé	Select the partition on which you want to submit your job.				
Piz Daint	normal	\$			
Technical Report	Executable				

Monitoring your job and system status

Watch your jobs in queues with

```
$ squeue -u ${USER}
```

```
daint103:~$ squeue -u simbergm
   JOBID
             USER ACCOUNT
                                                        START TIME
                                                                                       TIME LEFT NODES CPUS
                                     NAME ST REASON
                                                                                  TIME
11942503 simbergm csstaff hpx-3662-gcc-7
                                                                                           5:29:34
                                            R None
                                                        16:36:57
                                                                                  30:26
                                                                                                       1
                                                                                                           24
11945966 simbergm csstaff hpx-3712-gcc-7
                                            R None
                                                        16:44:24
                                                                                 22:59
                                                                                           5:37:01
                                                                                                       1
                                                                                                           72
11947200 simbergm csstaff hpx-3229-clang
                                           PD BeginTime 17:34:15
                                                                                                            1
                                                                                  0:00
                                                                                           6:00:00
                                                                                                       1
11947180 simbergm csstaff hpx-3684-gcc-7
                                          PD BeginTime Tomorr 00:19
                                                                                                            1
                                                                                  0:00
                                                                                           6:00:00
```

Observe state of queues with

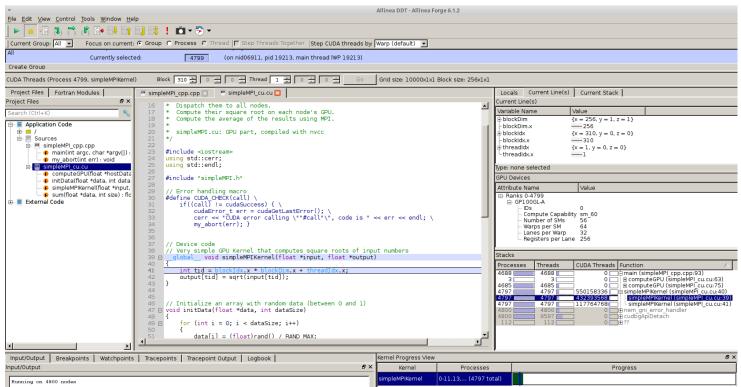
```
$ sinfo -o"%P %.5a %.10l %.6D %.6t"
```

```
daint103:~$ sinfo
PARTITION AVAIL JOB SIZE
                          TIMELIMIT
                                       CPUS S:C:T
                                                     NODES STATE
                                                                       NODELIST
debug
                1-4
                               30:00
                                         72 2:18:2
                                                         2 allocated
                                                                      nid00[448-449]
          up
debug
          up
                1-4
                               30:00
                                        24+ 1+:12+
                                                        14 idle
                                                                       nid0[0008-0011,0450-0451,3508-3511,4276-
4279]
                                                                       nordend0[3-4]
xfer
                                          9 9:1:1
                                                         2 idle
                1
                         1-00:00:00
          up
uftp
                1
                         1-00:00:00
                                          0:0:0
                                                         0 n/a
          up
                                                         7 down$
cscsci
                1
                         1-00:00:00
                                        24+ 1+:12+
                                                                       nid0[0125,0299,3541-3543,4579,5967]
          up
                                                                       nid0[0124,0126,1144-1147,1804-1807,3492-
cscsci
                1
                         1-00:00:00
                                        24+ 1+:1+:
                                                        28 maint
3495,3576-
```


Data and storage orchestration

- Transfer queue
 - to address data transfers
 between internal CSCS file
 systems (/user, /project, /store, and /scratch)
- Outside CSCS:
 - Classic file transfer service
 - Support for Fenix archival data repositories (OpenStack Swift)

```
#!/bin/bash -l
#
#SBATCH --time=02:00:00
#SBATCH --ntasks=1
#SBATCH --partition=xfer


module unload xalt
command="rsync -av"
echo -e "$SLURM_JOB_NAME started on $(date):\n $command $1 $2\n"
srun -n $SLURM_NTASKS $command $1 $2
echo -e "$SLURM_JOB_NAME finished on $(date)\n"

if [ -n "$3" ]; then
# unset memory constraint enabled on xfer partition
unset SLURM_MEM_PER_CPU
# submit job with dependency
sbatch --dependency=afterok:$SLURM_JOB_ID $3
fi
```


How to troubleshoot

- Frequently asked questions: https://user.cscs.ch/access/faq/
- Correctness, performance and scaling issues
 - https://user.cscs.ch/computing/analysis/

User and project management tools

- Checking your computing budget
 - Group usage
 sbucheck
 reports group usage across various CSCS computing systems
 - Daily usage monthly_usage monthly_usage -individual usage per group and group member
 - Overview of resources with the accounting and resource tool (via browser)

List of HBP Projects using Piz Daint

Virtual Epileptic Patient (PI: V. Jirsa)

Full-scale hippocampus model (PI: M. Migliore)

Cerebellum modelling (PI: E. D'Angelo)

Neurorobotics Platform (NRP) development (PI: A. von Arnim)

Image segmentation toolkit (ilastik) workflow (PI: A. Kreshuk)

NEST network construction and simulation (PI: H. E. Plesser)

<u>SimLab Neuroscience</u> (Pls: A. Morrison, B. Orth)

Model validation Service (PI: A Davison)

Neuromorphic Computing front-end services (PI: A. Davison)

https://www.humanbrainproject.eu/en/follow-hbp/news/nine-projects-from-hbp-enabled-by-fenix-consortium-partner-eth-zuerich-cscs-e-infrastructure/

References

- Fenix research infrastructure : https://fenix-ri.eu
- CSCS user portal: https://user.cscs.ch
- Piz Daint specifications:
 https://www.cscs.ch/publications/news/2017/factsheetpizdaintoneof
 themostpowerfulsupercomputersintheworld/
- CSCS User Lab day: https://github.com/eth-cscs/UserLabDay
- CSCS training events (upcoming):
 https://www.cscs.ch/events/upcoming-events/
- CSCS training events (past—links to material): https://www.cscs.ch/events/past-events/
- CSCS service catalog: https://www.cscs.ch/services/service-catalog

Contact Details and Additional Information

https://fenix-ri.eu/contact-us

https://fenix-ri.eu/media/webinars

https://fenix-ri.eu/infrastructure/resources

Thank you for your attention

