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Introduction
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■ Two environments plus associated storage■ HPC environment: parallel filesystemsActive Data Repositories (ACD)■ Cloud environment: object storesArchival Data Repositories (ARD)■ Goals of this talk■ storage architectures■ methods of access■ short guide on performance■ Disclaimer: vast generalisations



Active Data Repositories (ACD)
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■ Scalable Compute Services■ ACD usually built as Parallel Filesystems■ "Workhorse" of HPC storage■ Well-known interface: POSIX■ emulates local storage■ handles parallel access■ strong consistency semantics■ Highly optimised for bandwidth■ Examples: SpectrumScale, Lustre, BeeGFS



Archival Data Repositories (ARD)
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■ Interactive Compute/Virtual Machine Services■ Implemented as Object Stores■ very popular in Cloud and Web contexts■ less common in HPC■ Simpler than (parallel) filesystems■ no guarantees on ordering, but: atomicity■ put/get semantics■ flat hierarchies■ Examples■ Amazon S3■ OpenStack SWIFT (used in FENIX)
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ACTIVE DATA REPOSITORIESPart I



Typical Organisation
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■ Files are distributed in blocks■ striping for performance■ RAID for resilience■ Global metadata■ directory contents■ Size, RWM times, ...■ can be a source of contention■ Consistency model options■ relaxed: not POSIX■ using locks: scalability issues■ various trade-offs in between



Methods of Access

10

HDF5, netcdf, ...

Client/Driver

MPI-IO
POSIX

Parallel Application

Parallel Filesystem

Ser
ialo

r
Tas

klo
cal

Network

High-level libraries can expose MPI-IO
Low-level libraries pFS-aware tuning knobs
File-level access not pFS-aware same for serial I/O



User Interface
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■ POSIX: open, write, read, close, ...■ Files: byte-level access■ Directories: group files and other directories■ Strong guarantees on Ordering and Visibility■ eg Read after Write■ hold in multi-process environment■ especially: exclusive ownership■ hard to implement performantly■ Reachable inside a site■ Access control: owner/group, permissions



Do's and Don'ts
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Optimised Use A few, not one, files one per node at least block sized Contiguous access aligned to FS blocks block granularity exclusive to a process Reduce operation count read once, broadcast coalesce writes especially within nodes

Common Pitfalls Many small files metadata false sharing Concurrent use of files false sharing locks Random access caches pre-fetching Redundant accesses bandwidth
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import numpy as npimport h5py as h5from mpi4py import MPI
# Setup parametersN = 4comm = MPI.COMM_WORLDsize, rank = comm.size, comm.rank
# Generate a block of data containing our rankdata = np.zeros((N,), dtype=np.float32) + rank
# Create a pHDF5 file and a chunked dataset insidefd = h5.File("ranks.h5", "w", driver="mpio", comm=comm)fd.create_dataset("R", dtype=np.float32,shape=(N*size,), chunks=(N,),)
# All tasks coordinate, each writes one blockwith fd["R"].collective:fd["R"][N*rank : N*(rank + 1)] = data[:]
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$ mpirun -n 4 python3 ranks.py$ h5dump ranks.h5HDF5 "ranks.h5" {GROUP "/" {DATASET "R" {DATATYPE H5T_IEEE_F32LEDATASPACE SIMPLE { ( 16 ) / ( 16 ) }DATA {(0): 0, 0, 0, 0,1, 1, 1, 1,2, 2, 2, 2,3, 3, 3, 3}}}}



ARCHIVAL DATA REPOSITORIESPart II



Typical Organisation
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■ Data model: abstract objects■ arbitrary size■ metadata inline■ resilient storage■ (optionally) content addressable■ Atomic operations■ all-or-nothing■ no ordering guarantees■ Performance■ (usually) slower than pFS■ high latency/low IOp/s■ HTTP overheads■ not a HPC network
Server



Methods of Access
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User Interface
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■ HTTP REST■ Objects: atomic units of data■ Containers: group objects■ Flat hierarchy■ Atomic operations on objects■ no guarantees on order■ no byte-granular access■ Exposed on a public endpoint■ access protected by authentication■ traffic encrypted■ Access Control Lists



Introduction to REST

19

https://endpoi.nt/project/account/container/obj/ect

Containergroup of objectsEndpointSWIFT installation
User/ProjectIdentification

REpresentational State Transfer■ Pattern for Web API design■ Client-Server models■ Stateless, queries contain all context■ HTTP verbs express operations■ Resources identified by URL■ Atomic transitions between states

Verbs■ GET: Read content/List items■ HEAD: Get partial information, headers■ PUT/POST: Write to location■ DELETE: Remove item■ Less common: PATCH, TRACE, ...
URL

Objectatomic data unit



SWIFT Objects
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Object: Any byte stream■ POST: Write metadata■ GET: Content + metadata■ Can ask for most recent version (expensive)■ Can use eTag for caching■ PUT: Write data■ HEAD: Retrieve Metadata■ DELETE: Remove object
$ curl https://endpoi.nt/project/account/container/obj/ect \-X GET \-H "X-Auth-Token: $token"HTTP/1.1 200 OKDate: Thu, 16 Jan 2014 18:51:32 GMTAccept-Ranges: bytesContent-Length: 14Last-Modified: Wed, 15 Jan 2014 16:41:49 GMTEtag: 451e372e48e0f6b1114fa0724aa79fa1X-Timestamp: 1389804109.39027X-Object-Meta-Orig-Filename: goodbyeworld.txtContent-Type: application/octet-streamX-Trans-Id: tx8145a190241f4cf6b05f5-0052d82a34X-Openstack-Request-Id: tx8145a190241f4cf6b05f5-0052d82a34Goodbye World!

HTTP

OpenStack
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Metadata■ Key-Value pairs of formX-Object-Meta-<name>■ Mime-Type■ Encoding■ Expire objects at/after■ Checksums



SWIFT Containers
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Containers■ POST: Write metadata■ GET: Metadata + List of objects■ Paging/Sorting■ Pseudo-directory operations■ PUT: Create container■ HEAD: Retrieve Metadata■ DELETE: Remove containers
$ curl https://endpoi.nt/project/account/container \-X GET \-H "X-Auth-Token: $token"HTTP/1.1 200 OKAccept-Ranges: bytesDate: Wed, 15 Jan 2014 16:57:35 GMTContent-Length: 341Content-Type: application/json; charset=utf-8X-Container-Object-Count: 2X-Container-Meta-Book: TomSawyerX-Timestamp: 1389727543.65372X-Container-Bytes-Used: 26X-Trans-Id: tx26377fe5fab74869825d1-0052d6bdffX-Openstack-Request-Id: tx26377fe5fab74869825d1-0052d6bdffChapter/1Chapter/2

HTTP

OpenStack
Content

Metadata

Metadata■ Key-Value pairs of formX-Container-Meta-<name>■ Access control lists (ACLs)■ Quota■ Versioning■ Synchronisation



Do's and Don'ts
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Optimised Use Use a few MB per object see benchmarks later on Consider bundling data HDF5, "tar", ... Investigate compression HDF5, "zip", ... Cache RO objects Update via RMW cycle GET, update, PUT condense updates Consider versioning objects Leverage atomicity

Common Pitfalls Incremental updates redundant consistency with other writers Small objects Performance suffers Redundant operations individual operations are slow Concurrent modifications no locking, one writer wins
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# setup a virtual environment$ python3 -mvenv swift$ cd swift$ source bin/activate
# install required software$ pip install python-openstackclient lxml oauthlib \python-swiftclient python-heatclient$ git clone https://github.com/eth-cscs/openstack.git
# authenticate against SWIFT$ source openstack/cli/pollux.env> User: ******> Password: ******
# upload to a new container `test`$ swift upload test openstack
# check container$ swift list test... list of all files in `openstack` folder ...
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# Now we download the object back again, in python.from swiftclient.service import SwiftServicefrom os import environ as env
# Setup SWIFT clientswift = SwiftService(options={'auth_version': '3','os_project_id': env['OS_PROJECT_ID'],'os_auth_url': env['OS_AUTH_URL'],'os_auth_token': env['OS_TOKEN'],})
# List container and pull out nameslst = swift.list(container='test-new')nms = [i['name'] for p in lstfor i in p['listing']]
# Download one object into ByteStream and re-assembledwn = swift.download(container="test",objects=["openstack/cli/pollux.env"],options={"out_file": "-"})obs = [b"".join(d["contents"]) for d in dwn]

No errorschecked!



PERFORMANCEEvaluation



Performance Example: ACD
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■ IOR (3.3.0)■ 1 file/task■ no page cache■ MPI-IO backend■ Juwels@JSC■ GPFS■ 4 nodes x 24 tasks■ storage networkper node■ Use >16k blocks



Performance Example: ARD
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■ Cosbench (0.4.2)■ Operation mix■ concurrent■ 0.8R + 0.2W■ Juron@JSC■ 1 node x 20 tasks■ Pollux@CSCS■ Use >4M objects

Much more sensitiveto block size than pFS



KEY MESSAGESConclusion



Take-home Messages
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■ Two breeds of storage with unique strengths■ HPC + Active Data Repositories (ACD)■ Cloud + Archival Data Repositories (ARD)■ ACD for high-performance I/O on-site■ Fast, byte-oriented■ Strong guarantees for coordinated access■ ARD for long term, federated storage■ Slower, object-based■ Atomic put/get■ Data can be made accessible as a plain http link
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■ General information on SWIFT and I/O■ CSCS Object Storage user.cscs.ch/storage/object_storage■ HBP T7.2.3 I/O Guideswiki.humanbrainproject.eu/bin/view/Collabs/how-to-data-access-and-efficient-io■ OpenStack SWIFT docs.openstack.org/swift/latest■ Talk to us■ HBP Support support@humanbrainproject.eu■ Fenix User Forum fenix-ri.eu/infrastructure/fenix-user-forum■ Get Access to FENIX fenix-ri.eu/access

Learn More



QUESTIONS?Thanks!
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■ ior github.com/LLNL/ior■ cosbench github.com/open-io/cosbench■ https://www.nextplatform.com/2017/09/11/whats-bad-posix-io/■ High Performance Parallel IO (2019; Prabhat, Koziol et al)



POSIX Specification (2008)
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■ After a write to a regular file has successfully returned■ Any successful read from each byte position in the file that wasmodified by that write shall return the data specified by thewrite for that position until such byte positions are againmodified.Meaning: reads sync writes and are ordered relative to writes■ Any subsequent successful write to the same byte position inthe file shall overwrite that file data.Meaning: Writes are ordered relative to each other.
ConsequenceParallel FS must either break POSIXcompliance or very carefully performsynchronisation, which is expensive.



HPC

High Performance Storage Tier at JSC
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■ NVMe-based storagecluster at JSC■ Tied into HPC interconnect■ Small capacity■ High bandwidth■ Part of FENIX effort■ SLURM integration forCo-Scheduling
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