
www.fenix-ri.eu
The ICEI project has received funding from the European Union’s Horizon2020 research and innovation programme under the grant agreement No 800858.

Offerings, Architectures, and Best Practices
A Guide to the FENIX Storage Infrastructure

10 March 2020
Jülich Supercomputing Centre
Thorsten Hater

Agenda

2

■ Introduction■ FENIX Storage Offerings■ Parallel Filesystems■ Architecture■ Usage (libraries)■ Best Practices■ Object Stores■ Architecture■ Usage (Python, CLI)■ Best Practices■ Comparison■ Conclusion, and Q&A

STORAGE OFFERINGSIntroduction

Introduction

4

■ Two environments plus associated storage■ HPC environment: parallel filesystemsActive Data Repositories (ACD)■ Cloud environment: object storesArchival Data Repositories (ARD)■ Goals of this talk■ storage architectures■ methods of access■ short guide on performance■ Disclaimer: vast generalisations

Active Data Repositories (ACD)

5

■ Scalable Compute Services■ ACD usually built as Parallel Filesystems■ "Workhorse" of HPC storage■ Well-known interface: POSIX■ emulates local storage■ handles parallel access■ strong consistency semantics■ Highly optimised for bandwidth■ Examples: SpectrumScale, Lustre, BeeGFS

Archival Data Repositories (ARD)

6

■ Interactive Compute/Virtual Machine Services■ Implemented as Object Stores■ very popular in Cloud and Web contexts■ less common in HPC■ Simpler than (parallel) filesystems■ no guarantees on ordering, but: atomicity■ put/get semantics■ flat hierarchies■ Examples■ Amazon S3■ OpenStack SWIFT (used in FENIX)

User

HPC Environment
ACD

We
b

Cloud Environment
ARD

3.048km View

7

VM

SSH
User

Web

Analytics
Simulation

InteractiveCompute

ACTIVE DATA REPOSITORIESPart I

Typical Organisation

9

Control

Interconnect

App
Client

App
Client

Server ServerMetadata

■ Files are distributed in blocks■ striping for performance■ RAID for resilience■ Global metadata■ directory contents■ Size, RWM times, ...■ can be a source of contention■ Consistency model options■ relaxed: not POSIX■ using locks: scalability issues■ various trade-offs in between

Methods of Access

10

HDF5, netcdf, ...

Client/Driver

MPI-IO
POSIX

Parallel Application

Parallel Filesystem

Ser
ialo

r
Tas

klo
cal

Network

High-level libraries can expose MPI-IO
Low-level libraries pFS-aware tuning knobs
File-level access not pFS-aware same for serial I/O

User Interface

11

■ POSIX: open, write, read, close, ...■ Files: byte-level access■ Directories: group files and other directories■ Strong guarantees on Ordering and Visibility■ eg Read after Write■ hold in multi-process environment■ especially: exclusive ownership■ hard to implement performantly■ Reachable inside a site■ Access control: owner/group, permissions

Do's and Don'ts

12

Optimised Use A few, not one, files one per node at least block sized Contiguous access aligned to FS blocks block granularity exclusive to a process Reduce operation count read once, broadcast coalesce writes especially within nodes

Common Pitfalls Many small files metadata false sharing Concurrent use of files false sharing locks Random access caches pre-fetching Redundant accesses bandwidth

13

import numpy as npimport h5py as h5from mpi4py import MPI
Setup parametersN = 4comm = MPI.COMM_WORLDsize, rank = comm.size, comm.rank
Generate a block of data containing our rankdata = np.zeros((N,), dtype=np.float32) + rank
Create a pHDF5 file and a chunked dataset insidefd = h5.File("ranks.h5", "w", driver="mpio", comm=comm)fd.create_dataset("R", dtype=np.float32,shape=(N*size,), chunks=(N,),)
All tasks coordinate, each writes one blockwith fd["R"].collective:fd["R"][N*rank : N*(rank + 1)] = data[:]

14

$ mpirun -n 4 python3 ranks.py$ h5dump ranks.h5HDF5 "ranks.h5" {GROUP "/" {DATASET "R" {DATATYPE H5T_IEEE_F32LEDATASPACE SIMPLE { (16) / (16) }DATA {(0): 0, 0, 0, 0,1, 1, 1, 1,2, 2, 2, 2,3, 3, 3, 3}}}}

ARCHIVAL DATA REPOSITORIESPart II

Typical Organisation

16

Internet

App App

Server Server

■ Data model: abstract objects■ arbitrary size■ metadata inline■ resilient storage■ (optionally) content addressable■ Atomic operations■ all-or-nothing■ no ordering guarantees■ Performance■ (usually) slower than pFS■ high latency/low IOp/s■ HTTP overheads■ not a HPC network
Server

Methods of Access

17

CLI

HTTP

User/Application

SWIFT Instance

Library
FUSE Web

Internet

Firewalls!

swiftclient Python parallel advanced features

FS on SWIFT works well for RO may break POSIX

Official client

Raw REST
Browser as UI

User Interface

18

■ HTTP REST■ Objects: atomic units of data■ Containers: group objects■ Flat hierarchy■ Atomic operations on objects■ no guarantees on order■ no byte-granular access■ Exposed on a public endpoint■ access protected by authentication■ traffic encrypted■ Access Control Lists

Introduction to REST

19

https://endpoi.nt/project/account/container/obj/ect

Containergroup of objectsEndpointSWIFT installation
User/ProjectIdentification

REpresentational State Transfer■ Pattern for Web API design■ Client-Server models■ Stateless, queries contain all context■ HTTP verbs express operations■ Resources identified by URL■ Atomic transitions between states

Verbs■ GET: Read content/List items■ HEAD: Get partial information, headers■ PUT/POST: Write to location■ DELETE: Remove item■ Less common: PATCH, TRACE, ...
URL

Objectatomic data unit

SWIFT Objects

20

Object: Any byte stream■ POST: Write metadata■ GET: Content + metadata■ Can ask for most recent version (expensive)■ Can use eTag for caching■ PUT: Write data■ HEAD: Retrieve Metadata■ DELETE: Remove object
$ curl https://endpoi.nt/project/account/container/obj/ect \-X GET \-H "X-Auth-Token: $token"HTTP/1.1 200 OKDate: Thu, 16 Jan 2014 18:51:32 GMTAccept-Ranges: bytesContent-Length: 14Last-Modified: Wed, 15 Jan 2014 16:41:49 GMTEtag: 451e372e48e0f6b1114fa0724aa79fa1X-Timestamp: 1389804109.39027X-Object-Meta-Orig-Filename: goodbyeworld.txtContent-Type: application/octet-streamX-Trans-Id: tx8145a190241f4cf6b05f5-0052d82a34X-Openstack-Request-Id: tx8145a190241f4cf6b05f5-0052d82a34Goodbye World!

HTTP

OpenStack
Content

Metadata

Metadata■ Key-Value pairs of formX-Object-Meta-<name>■ Mime-Type■ Encoding■ Expire objects at/after■ Checksums

SWIFT Containers

21

Containers■ POST: Write metadata■ GET: Metadata + List of objects■ Paging/Sorting■ Pseudo-directory operations■ PUT: Create container■ HEAD: Retrieve Metadata■ DELETE: Remove containers
$ curl https://endpoi.nt/project/account/container \-X GET \-H "X-Auth-Token: $token"HTTP/1.1 200 OKAccept-Ranges: bytesDate: Wed, 15 Jan 2014 16:57:35 GMTContent-Length: 341Content-Type: application/json; charset=utf-8X-Container-Object-Count: 2X-Container-Meta-Book: TomSawyerX-Timestamp: 1389727543.65372X-Container-Bytes-Used: 26X-Trans-Id: tx26377fe5fab74869825d1-0052d6bdffX-Openstack-Request-Id: tx26377fe5fab74869825d1-0052d6bdffChapter/1Chapter/2

HTTP

OpenStack
Content

Metadata

Metadata■ Key-Value pairs of formX-Container-Meta-<name>■ Access control lists (ACLs)■ Quota■ Versioning■ Synchronisation

Do's and Don'ts

22

Optimised Use Use a few MB per object see benchmarks later on Consider bundling data HDF5, "tar", ... Investigate compression HDF5, "zip", ... Cache RO objects Update via RMW cycle GET, update, PUT condense updates Consider versioning objects Leverage atomicity

Common Pitfalls Incremental updates redundant consistency with other writers Small objects Performance suffers Redundant operations individual operations are slow Concurrent modifications no locking, one writer wins

23

setup a virtual environment$ python3 -mvenv swift$ cd swift$ source bin/activate
install required software$ pip install python-openstackclient lxml oauthlib \python-swiftclient python-heatclient$ git clone https://github.com/eth-cscs/openstack.git
authenticate against SWIFT$ source openstack/cli/pollux.env> User: ******> Password: ******
upload to a new container `test`$ swift upload test openstack
check container$ swift list test... list of all files in `openstack` folder ...

24

Now we download the object back again, in python.from swiftclient.service import SwiftServicefrom os import environ as env
Setup SWIFT clientswift = SwiftService(options={'auth_version': '3','os_project_id': env['OS_PROJECT_ID'],'os_auth_url': env['OS_AUTH_URL'],'os_auth_token': env['OS_TOKEN'],})
List container and pull out nameslst = swift.list(container='test-new')nms = [i['name'] for p in lstfor i in p['listing']]
Download one object into ByteStream and re-assembledwn = swift.download(container="test",objects=["openstack/cli/pollux.env"],options={"out_file": "-"})obs = [b"".join(d["contents"]) for d in dwn]

No errorschecked!

PERFORMANCEEvaluation

Performance Example: ACD

26

■ IOR (3.3.0)■ 1 file/task■ no page cache■ MPI-IO backend■ Juwels@JSC■ GPFS■ 4 nodes x 24 tasks■ storage networkper node■ Use >16k blocks

Performance Example: ARD

27

■ Cosbench (0.4.2)■ Operation mix■ concurrent■ 0.8R + 0.2W■ Juron@JSC■ 1 node x 20 tasks■ Pollux@CSCS■ Use >4M objects

Much more sensitiveto block size than pFS

KEY MESSAGESConclusion

Take-home Messages

29

■ Two breeds of storage with unique strengths■ HPC + Active Data Repositories (ACD)■ Cloud + Archival Data Repositories (ARD)■ ACD for high-performance I/O on-site■ Fast, byte-oriented■ Strong guarantees for coordinated access■ ARD for long term, federated storage■ Slower, object-based■ Atomic put/get■ Data can be made accessible as a plain http link

30

■ General information on SWIFT and I/O■ CSCS Object Storage user.cscs.ch/storage/object_storage■ HBP T7.2.3 I/O Guideswiki.humanbrainproject.eu/bin/view/Collabs/how-to-data-access-and-efficient-io■ OpenStack SWIFT docs.openstack.org/swift/latest■ Talk to us■ HBP Support support@humanbrainproject.eu■ Fenix User Forum fenix-ri.eu/infrastructure/fenix-user-forum■ Get Access to FENIX fenix-ri.eu/access

Learn More

QUESTIONS?Thanks!

References

32

■ ior github.com/LLNL/ior■ cosbench github.com/open-io/cosbench■ https://www.nextplatform.com/2017/09/11/whats-bad-posix-io/■ High Performance Parallel IO (2019; Prabhat, Koziol et al)

POSIX Specification (2008)

33

■ After a write to a regular file has successfully returned■ Any successful read from each byte position in the file that wasmodified by that write shall return the data specified by thewrite for that position until such byte positions are againmodified.Meaning: reads sync writes and are ordered relative to writes■ Any subsequent successful write to the same byte position inthe file shall overwrite that file data.Meaning: Writes are ordered relative to each other.
ConsequenceParallel FS must either break POSIXcompliance or very carefully performsynchronisation, which is expensive.

HPC

High Performance Storage Tier at JSC

34

■ NVMe-based storagecluster at JSC■ Tied into HPC interconnect■ Small capacity■ High bandwidth■ Part of FENIX effort■ SLURM integration forCo-Scheduling

Usecases Burst Buffer Check pointing Pre-staging Data processing campaigns Live visualization Complex workflows
HPC

IC
HPS

THPC Eth GPF
S

